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Abstract—The novel Silicon Dangling Bond (SiDB) has be-
come a prominent alternative to the current Complementary
Metal Oxide Semiconductor (CMOS) transistor due to the low
energy consumption and high integration potential. This article
reports the classification of 2-input Y-shape SiDB designs using
a Convolutional Neural Network and the development of a suit
of 120 handmade SiDB designs. We use our suite of handmade
gates to extract features to train and test the models. The results
show our accuracy and the potential fundamental features for
classifying 2-input SiDB gates, overcoming the need for a time-
consuming circuit simulation. This novelty may mitigate the time
complexity for simulations of larger SiDB circuits composed of
2-input gates in the future. We use the state-of-art CAD tool for
SiDB technologies, named SiQAD, for simulation and verification.
We achieve an average accuracy of 70% for the complete CNN
implementation and 90% for the better internal network, with a
speedup of at least 18x for 120 designs.

Index Terms—Atomic Silicon Quantum-dot, dangling bonds,
Convolutional Neural Network, image recognition. Silicon Dan-
gling Bonds, and SiQAD.

I. INTRODUCTION

The well-known Complementary Metal-Oxide-
Semiconductor (CMOS) technology is responsible for
the current development of computer systems. However,
this technology is close to its physical limitations. Then,
the novel Field-Coupled Nanotechnologies [1] (FCNs) have
become a promising alternative to the CMOS. Examples of
widely-adopted examples of FCN are Quantum-dot Cellular
Automata (QCA) [2] and Nanomagnetic Logic (NML) [3],
[4]. The emerging FCN, named Silicon Dangling Bonds
(SiDB), has proved to be more efficient regarding area
costs and energy consumption. Unlike other approaches, it
also does not require cryogenic temperatures for physical
implementation. For instance, Huff et al. [5] propose a model
for the 2-input OR gate verified through a Scanning Tunneling
Microscope.

This novel technology takes advantage of the SiQAD sim-
ulator [6], a state-of-art tool that allows prototyping and
verification before the physical production of SiDB circuits.
However, it is still a challenge to design logic gates and
interconnections. The current design method is either a formal
analysis or manual development of each circuit by hand in the
SiQAD, using the SimAnneal [6] engine. All those methods

are expensive and time-consuming options, especially when
working with large designs.

Several recent papers present advances in the SiDB
research: 2-input gates (2-AND and 2-OR) [5], 3-input
gates(XOR3, Majority gate) [7], and wire connections be-
tween circuits with different methods [8]. The current literature
also explores the possible automated designing of simple
gates [9], using reinforcement learning. Despite that, the time
needed for simulations and development grows exponentially
with the increase of design complexity. One approach to solve
this challenge is to explore artificial intelligence, machine
learning, and neural networks to improve the performance
of SiDB simulation. In this work, we propose to evaluate
convolution neural networks.

Our main contributions are: 1) a Convolutional Neural Net-
work (CNN) for classifying arbitrary 2-input Y-shape designs;
2) a library of 120 handmade SiDB 2-input Y-shape gates
that implement six Boolean functions (AND, OR, NAND,
NOR, XOR, XNOR)1. The main challenge of this work is
finding common properties between logical gates that allow a
more concise and precise way of determining gate behavior.
For this reason, we use CNN to classify images of these
gates into the six specified classes. The CNN is a well-known
strategy in the context of image recognition [10] since it works
by applying filters (convolutional operations) into matrices
and also handles well with locally accessible information by
consequence. We achieve an average accuracy of 70% for the
complete CNN implementation and 90% in the better case.

We organize this paper as follows. First, in Section II, we ex-
plain the current progress behind the Silicon Dangling Bonds.
In Section III, we review the literature. Section IV presents
our Convolutional Neural Network approach to classifying 2-
input gates into six classes. We also show how to produce a
set of gates, varying angles, and distances between SiDBs. In
Section V, we compare our work with the current literature.
Then, in Section VI, we conclude by summarizing our results
and main contributions.

II. BACKGROUND

The Silicon Dangling Bond (SiBD) can have compact lay-
outs and use low power for its operation. The development of

1https://github.com/lesc-ufv/2-inputGatesRecognition



this technology was possible with the break of specific Silicon-
Hydrogen bonds in a H-terminated Silicon plating, making
easily excitable hydrogen atoms [5], also known as a Dangling
Bond (DB). Those DBs can be in three states, Positive (DB+),
by having no negative charge, Neutral (DB0) by having one
negative charge, and Negative (DB-), by having two negative
charges. A specific combination of atoms with those charge
configurations defines the logical levels. The building block
of SiBD technology is composed of a pair of DBs and an
independent charge associated (perturber, which is represented
in deep blue), as shown in Figure 1(a)(b). Figure 1(a) shows
the binary 0. Figure 1(b) shows the binary 1.

More complex structures are composed of combinations
of the minimum units. Several pairs of DBs in a linear
disposition compose a wire, as Figure 1(c)(d) present wires
moving information forward, the arrows represent the direction
of the flow. Then, the arrangement of wires could create
nanometric gates and larger circuits that propagate signals with
no electrical current flow.

Fig. 1. (a) DB pair: Binary 0. (b) DB pair: Binary 1. (c)(d) wire signal flow.

With the usage of perturbers and correct alignment of the
DB Pairs, it’s possible to control how their interaction happens,
allowing the manipulation of information and its behavior
inside the system. The DB pair could modify its neighbors
to allow for computational operation at high speeds and low
energy usage, while maintaining the stability and predictability
of the system. So far, the literature reports the implementation
of 2-input [6], [7] and 3-input [7], [8] gates. The main design
rules for the 2-input gates are Y-shape [6] and T-shape [7].
Figure 2 presents a Y-shape AND gate. The blue and red lines
mark respectively input and output. The black arrows show the
DB pairs and the perturbers.

Fig. 2. Y-shape AND gate. [5].

We choose the Y-shaped 2-gate as input for the neural net-
work because we can implement several handmade versions of
them. These designs also are already implemented in real life
using physical implementation [5]. They also have a known
operational domain and work over a wide range of combina-
tions of physical parameters. Those variables respectively are:

value referring to bulk doping levels(µ), the Thomas-Fermi
screening length(λTF ), and relative permittivity(ϵr) [6].

With the usage of the SiQAD tool and its plugin SimAn-
neal [6], it’s possible to create and simulate how gates or cir-
cuits would behave in real life without the necessity of physical
implementation. This tool uses an algorithm that simulates the
interactions between DBs based on results acquired by physi-
cal tests and their implementation [11]. While not an optimal
simulation due to the complexity of the variables involved,
the simulation tool executes and analyzes the most probable
outcome (ground state) for the implemented configuration of
DBs, and shows on the graphical interface the answer. The
ground state means the lowest energetic configuration that
provides a physically valid charge configuration.

III. RELATED WORK

The related work reports advancements in the area of SiBDs
and CNNs for the extraction of information related to patterns
for circuit design. In the SiDB area, the development of
new circuits proves to be troublesome, especially with the
connection of multiple gates into one workable design [8],
[12]. The connection of multiple circuits using the SiQAD
simulator and the development of larger circuits [6] [7] are
the main current issues, due to the complexity, time of the
simulation, and the challenging task of designing SiDB wire
connections.

In the Reinforcement learning area, the usage of DNNs,
CNNs, and similar technologies for finding and developing
new connections with good time performance is already used
in multiple technologies, including CMOS to the new FCNs.
The literature demonstrates policies for training and classifica-
tions of images, methods for acquiring better results and low-
ering the confirmation bias as well the normalization of data
and inputs for CNNs [13]. In the context of circuit connection,
there is a relevant contribution that proposes a CNN-based
analysis for CMOS circuits [14]. This implementation handles
Very Large Scale Integration(VLSI) and follows design rules
in Integrated Circuits.

Robert et al. [9] propose an application of Reinforcement
Learning to create the first automated designer for SiDB
designs using SiQAD. The target of this automated develop-
ment of circuits is the development of the internal structure
of 2-input Y-shape gates. The algorithm can create a SiDB
design for any 2-input Boolean function. To the best of our
knowledge, there is no other implementation of an Artificial
Intelligence method associated with the development of SiDB-
based circuits.

IV. METHODOLOGY

In the following, we depict the development of the CNN-
based strategy to classify the 2-input Y-shape gates into
six classes (AND, OR, NAND, NOR, XOR, XNOR). The
Convolutional Neural Network (CNN) is our target approach
because it is a well-established solution for recognizing chal-
lenging image-driven patterns due to its capacity to handle
filters and locally accessible information. [10]. The proposed



implementation uses Keras/Tensorflow Google APIs. First, we
present our set of 120 2-input designs, the development of
those gate variations, how we use pictures of the gates as the
entry of the CNN, and all pre-processing of CNN’s input data.

A. Development of the 120 gates set

Fig. 3. NAND gate: original and variant.

For creating the entirety of the set of 120 gates used in
this work, we followed the steps shown in Figure 3. We
introduce minor changes in the position of the DBs in the
circuits using the SiQAD simulator, varying the following
distances: between input DBs and input perturber (Black
arrows), between two DB pairs in the output wire (Blue
arrows), between the output wire and the output perturbers
(Orange Arrow). Another possible modification is the insertion
of a DB (Red X) in the middle of the triangle formed by the
Input and the start of the Output DBs. We can create multiple
variants of the gates. Then, we manually test every gate to
check if they maintain the expected behavior for the respective
Boolean function. We manually check if each gate is valid in
a specific range of the physical parameters of the simulator
µ = -0.28 eV, λTF = 5nm, and ϵr = 5.6.

B. CNN: input pre-processing, training and test

As already mentioned, our training dataset is a collection
of 120 gates made by hand on the SiQAD simulator. Then,
we process those images, reducing the sizes and labeling them
into the classes (AND, OR, XOR, XNOR, NOR, and NAND).
There are no problems in lowering the image resolution since
the necessary features are still highlighted in them even with
the lower image quality. Moreover, we also indicate important
distances in the images of the gates, using arrows and other
geometric forms, as shown in Figure 4. The black lines mark
the distances between the perturbers and the DBs of the gate.
The red triangle and the red line show the gate’s internal
structure. Finally, the green squares emphasize the internal
distances between the DB pairs from the output wire. We use
those modified images as the input of the CNN because these
marks facilitate the obtaining of features for the CNN.

In the next step, the system calls the CNN from the Keras
interface to start the training. Inside the Neural Network, the
algorithm acquires the features that distinguish the classes. In
this process, the CNN finds subtle details that are important
for the classification, but humans may not notice them. Our
training process has 1200 epochs and takes on average 10

Fig. 4. CNN pre-processing Gates: (1): AND (2): OR (3): XOR (4): XNOR
(5): NOR (6) NAND.

minutes to achieve an accuracy of 70%, considering the
classification into all the six classes in the same network.

V. RESULTS

A. Time consumption

Table I shows the execution times for our CNN, SIQAD
(only main 120 inputs), and SIQAD (All variants necessary
to test the complete truth table). The last line of the table
presents the time cost for the simulation of all lines of the
truth table for the entire set of gates. Simulating all input
combinations is the only way to guarantee the gate’s behavior
with a precision of 100%. Considering that the ground state
reached by simAnneal (SiQAD) always corresponds to the real
physical state of the circuit (which is a fair expectation), we
can assert that the simulator reaches an accuracy of 100%.
The simulation of all 120 designs (with µ = -0.28) takes on
average 45 minutes for a single execution for each distinct
circuit. However, checking the complete truth table of a gate
with n inputs requires 2n simulation calls. Therefore, we must
call The SimAnneal engine 4 times to check each 2-input gate,
consequently, the expected time increases by at least 4×.

On the other hand, the CNN can achieve a precision of 70%,
using all six classes in the same network and slicing the 120
gates set into 25% for testing and 75% for training. We also
consider the time for testing 120 images in the network after
training in the total time for CNN. Our implementation takes a
long time to train all the 120 images, taking around 10 minutes
to finish the process. But, after that, with a prediction of 70%,
we can expect to save time in the testing. The CNN takes
3 to 5 seconds to find all the necessary details and predict
the functionality of a single Y-shaped gate image. For all
those experimental results, the CPU baseline is the processor
Intel Core i5-4210U 1.70GHz with 4 cores and 3072K of L3
cache. Our CNN achieve a speedup of 18x over the simulator,
ensuring the behavior of 120 gates.



TABLE I
TIME CONSUMPTION

Method used Total avg. time(m) Precision(%)
CNN (120 inputs) 10m 03s 70%

SIQAD (120 inputs) 45m -
SIQAD (Input+variants) 180m 100%

B. CNN: Accuracy

Figure 5 shows the accuracy as a function of the number of
epochs, considering an implementation of a traditional CNN
from the Keras interface that classifies the gates into six
classes. This graph shows that the accuracy is stabilized at
60% starting from the 800th epoch.

Fig. 5. Accuracy per Epoch for the traditional CNN.

Fig. 6. Accuracy per Epoch for CNNs with two classes of gate.

Then, we improve the precision with some changes in our
implementation, joining the gates into groups and developing
a system composed of four CNNs. First, we use one CNN for
the following three pairs of gates: AND with NOR, OR with
NAND, and XOR with XNOR. Those three CNNs receive as
input only the gates from the respective pair, classifying them
only into two classes. Then, we create another CNN with a
larger input set, taking all six classes into account. This last
CNN groups together the previous classifications. Figure 5
present the accuracy achieved by all those CNNs. The red line
achieves better results due to the differences between the AND

gate and the NOR gate. Those designs are very different from
each other in terms of positions of DBs. This graph proves that
the accuracy of the CNN that assembles all other CNNs has
a superior limit on the one that achieves the lowest precision.
This implementation improves the accuracy from 60% to 70%.

VI. CONCLUSIONS

This work presented the usage of Convoluted Neural Net-
works, showing a novel solution to a time-consumption simu-
lation problem. Our CNN implementations could identify and
gather points of interest and similarities between gates that
correspond to the same truth table. Moreover, we acquired a
70% accuracy in testing Y-shaped 2-input gates. The current
model shows a promising result in CNNs in the SiBD tech-
nology, allowing for more precise and faster testing.
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